Final Report

Computational Design
Optimization Techniques for Engineering Design Problems

Johan Ölvander, PhD
Division of Machine Design
Department of Management and Engineering, Linköping University
Phone: +46 13 281711, email: johan.olvander@liu.se

Background and motivation

Engineering design is a special form of problem solving where a set of frequently unclear objectives has to be balanced without violating any given constraints. Thus, it seems natural to look upon a design problem as multi-objective optimization problems. By employing modern modeling, simulation and optimization techniques, vast improvements could be achieved in design. However, there will always be parts of the design process that require human or inquantifiable judgment that is not suited for automation with any optimization strategy.

Computational design can be seen as the use of computers in the design process in order to formalise and automate it to a level that agrees with current technologies in computer sciences and applied mathematics in a broad sense. The project concentrates on the parts of the design process that can be formalised, as well as how formal methods affects the design process as a whole. This includes optimisation methods, sensitivity and robustness analysis, as well as formal methods for defining system requirements, and methods to ensure traceability in design. Since computational design methods operate on system models, modelling and simulation are central concepts in this research area.

Optimization as it is employed here is based on simulation results, possibly from a large number of different simulation environments. The problem is also characterized by the presence of both continuous parameters and discrete selections of individual components from catalogs or databases. Thus, the problem is non-linear and there are no derivatives of the objective functions available in a straightforward manner. These are reasons for applying non-gradient optimization methods such as the Complex method or Genetic Algorithms. Another reason is that these methods are robust in locating the global optima in multi-modal search spaces.

Industrial motivation

High quality, quick response to market needs, innovative products and low cost are decisive in order to stay competitive on an increasingly competitive global market. It also becomes more important to find and to express requirements more exactly in order to be able to emphasize the right ones. To beat the competition to the market it is also necessary with a rapid development process. Especially in the early conceptual phase of the design process, the designer needs efficient tools that make it possible to compare different design solutions and to analyze the whole system, and not just a part. Tools are also needed, that can relate design decisions at detail level to high-level requirements in order to ensure traceability in the design. In this project the above issues are addressed by introducing formal optimization methods together with comprehensive simulation models and integrate them in the development process in cooperation with industrial partners.

Main goals and achievements

The project aims at developing design methods and tools that improve the design process and the quality of designed systems. The design process paradigm uses decision-making models to describe design alternatives, and optimization methods that search the design space for the best design among all possible design options. Within the project a framework has been developed where simulation,
Computational Design Final report

Project nr. 03.15

optimization and decision support tools are interconnected and integrated in the product development process. The framework includes multi-objective and multi-disciplinary optimization techniques, and tools for structuring optimization problems and formulate objective functions.

Different optimization algorithms have been developed within the projects, such as a multi-objective genetic algorithm for mixed continuous and discrete problems [12], [16], [38]. Additionally the Complex method has been improved by making it adaptive, [25], but also by making it capable of handling problems with mixed variables, [30], [31]. Furthermore, methods have been developed for comparing performances of different optimization algorithms, [29], [34], [40]. Techniques for balancing robustness and optimality and for taking uncertainties into account have also been developed in [10], [17] and [32]. Furthermore, matrix based design methods, such as OFD, DSM and the morphological matrix, have been formalized and implemented in a computational framework thus facilitating automation early in the development process. The results have been implemented at Saab and are reported in, [21], [27], [28] and [35].

A modular simulation and optimization framework for robot design has been developed, using the object oriented simulation package Dymola and the discrete Complex optimization method, which has been implemented in MATLAB, [24].

Industrial cooperation

Within the project the developed techniques have been applied to industrial problems in cooperation with the project partners. Thereby the validity of the developed methods has been assessed, and knowledge has been gained in order to improve and develop new methods that support engineering optimization. The Industrial cooperation is summarized below. Please note that many of the publications are co-authored with the industrial partners.

Volvo Car Corporation

Two projects have been conducted in cooperation with Volvo Cars. The first project aims at finding the optimal set of functions to implement in an automobile in order to maximize profit subjected to development budget constraints and safety issues. The project is carried out in cooperation with Christian Grante at Volvo Car Corporation, who is a former PhD student from the department. This project has resulted in publications [15] and [43]. The second project is the Evolve project, which was a student project run in collaboration with Volvo Cars, for which we received the TekIT-prize 2005. Papers [14], [46] and [42] present the results and some of the lessons learned from this project.

Parker Hannifin AB

There has been a close cooperation with Parker Hannifin to develop quieter hydraulic pumps by using advanced modeling, simulation and optimization techniques. In this project simulation and optimizations results have been verified using measurements of physical components that have been designed based on the outcome of the optimizations. During 2003 to 2006 the cooperation involved PhD student Andreas Johansson, which resulted in Andreas’s PhD thesis [4] and publications [8] and [44]. The cooperation continued with PhD student Liselott Ericson, which has resulted in her licentiate thesis [1] and publications [20] and [22]. Andreas are now a Parker employee, and thereby the methods and tools developed in the project are transferred to the company.

Saab Aerospace AB

Together with Saab Aerospace, tools and methods are being developed for optimal design of aircraft fuel systems. Within this project optimization is used together with matrix based design methods in order to support conceptual design of aircraft fuel systems. Publications from this collaboration include [3], [9], [11], [21], [27], [28], [32], [35] and [37]. Furthermore, the methods developed within this project are now in use at the company.

ABB Robotics

Within the project, there has been a close collaboration with ABB Robotics involving PhD student Marcus Pettersson focusing on development of optimization algorithms and methods to support design optimization in industrial robots. Marcus has developed tools and methods at the university but also spent considerable time at ABB in order to integrate the methods with the software tools used in the development process at ABB. The techniques developed have been used to solve real engineering
problems at ABB Robotics, and the results show great potential. The project has resulted in Marcus’ doctoral, [2], and licentiate, [5], and publications [25], [26], [30], [31] and [33]. Marcus is now employed at ABB Corporate research, so the techniques developed at the university could easily be transferred to ABB.

ABB Corporate Research

There is also collaboration with ABB Corporate Research in the field of robot design optimization. One focus area for this project is optimal design of product families, i.e. not to optimize a single robot but a family of different robots taking modularity issues into account. The first results from this research are presented in [18]. Ongoing efforts within this project include the work of PhD-student Mehdi Tarkian who develops highly flexible parametric CAD-models that are connected to other software programs such as Dymola, MATLAB and MS Excel, see [19].

Furthermore, the cooperation with the two ABB companies has also resulted in the project ‘Integrated Framework for Optimal Design’, financed by VINNOVA with 4.1 MSEK during 2005-2007.

Economic report

The majority of the financial support has been used to finance the project leader, Johan Ölvander. However, parts of the resources have been used to finance PhD students Marcus Pettersson and Mehdi Tarkian, as well as for travel expenses.

The project has contributed to the following promotions and dissertations

Research group

Based on the financial support from CENIIT a research group has been established within the field of design optimization with an emphasis on industrial robot development. Currently one associate professor, one PhD student and two industrial post docs (employed 20% at the university) are associated with the research group.
Publications since project start 2003

The project has resulted in the following publications including theses supervise by the project leader. Please note that the project leader changed family name from Andersson to Ölvander in 2004.

Theses

Journal papers

Book chapters

Reviewed conference proceedings

